Partial oxidation of CH₄ at low pressure over SiO₂ prepared from Si

Takehiko Ono¹, Hiroyuki Kudo and Jyun Maruyama

Department of Applied Chemistry, University of Osaka Prefecture, 1-1 Gakuen-cho, Sakai, Osaka 593, Japan

Received 20 October 1995; accepted 20 February 1996

The oxidation of CH_4 with O_2 at low pressure was carried out over SiO_2 prepared from metal Si. The Si showed only total oxidation activity while the Si partly oxidized to SiO_2 showed high selectivities to CH_3OH and HCHO. The results on SiO_2 prepared from Si were compared with those over commercial silicas. The role of SiO_2 in the CH_4 oxidation was discussed.

Keywords: partial oxidation of CH₄; CH₃OH; HCHO; SiO₂ catalyst

1. Introduction

The conversion of CH₄ to CH₃OH and HCHO has been studied by many workers [1–3]. The direct oxidation of CH₄ into CH₃OH at high pressures using glass coated reactors or Pyrex and quartz reactors have been reported by some workers [4,5]. The CH₃OH and HCHO formation from CH₄ has been studied over Moor V-oxide/SiO₂ catalysts using N₂O as an oxidant [6–8]. The HCHO formation has been studied over Fe-, V-, and Mo-oxide/SiO₂ [9–11] using O₂ as an oxidant. It is interesting that the selective partial oxidation in these reports occurs over "silica"-based catalysts. Some workers have focused their attention on SiO₂ itself [12–14].

Previously, we also studied [15] the CH₃OH and HCHO formations in the oxidation of CH₄ using O₂ over various commercial SiO₂ catalysts. In this work, we tried to measure the oxidation rates under special conditions over SiO₂ catalyst prepared from metal Si in order to obtain the initial rate of partial oxidation and to understand the role of SiO₂ itself basically. The results were compared with those over various commercial silicas. The effects of oxygen pressures, surface area, and impurities in SiO₂ were examined. The percent of ¹⁸O in the products was also examined using ¹⁸O₂ as a reactant. The heterogeneous and homogeneous processes in the partial oxidation were also discussed.

2. Methods

2.1. Materials

SiO₂ was obtained by heating the Si metal (Nakarai Tesque Co., 99.99%) in air at 1173–1373 K. The amount of SiO₂ (mol% in the Si sample) was calculated from the weight increase after heating in the furnace. Commercial silicas such as ADM (Shin-Etutsu Chemicals Co.), Silica

gel-60-extra pure (Merck Co.), SIO-4 (JRC, Catalysis Society of Japan), and Aerosil-300 and OX-50 (Nippon Aerosil Co.) were used. CH_4 (> 99%), O_2 (> 99%), and $^{18}O_2$ (98.1at%, Isotec Inc.) were used as reactants.

2.2. Procedures

CH₄ oxidations were carried out using a closed circulation system (ca. 300 cm³) made of Pyrex glass and a reactor made of quartz (fig. 1). Reactant mixtures of ca. 8 Torr of CH₄ and 0.08–0.24 Torr of O₂ were used for the reaction experiments. The circulation time was regarded as reaction time for 1 or 2 h. Products such as CH₃OH, HCHO, CO₂, and H₂O were caught by a trap at 77 K (fig. 1) during the reaction at 873–973 K. The quartz reactor itself has a slight activity but it was very small, below ca. 5% of the catalytic activity at 873 K. The formation of CO is negligibly small in this case. A

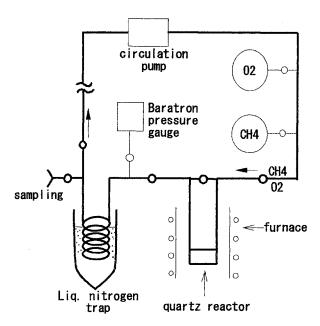


Fig. 1. A closed circulation system for CH₄ partial oxidation.

¹ To whom correspondence should be addressed.

short pass was set between the reactor and trap to prevent polymerization of HCHO. After the reaction, the products such as CH₃OH, HCHO, H₂O and CO₂ were kept in the sample tubes at 77 K to prevent HCHO polymerization. Their amounts were determined by gas chromatography using a TSR-1 column. In order to separate water and HCHO well, the pass in front of the column was preheated at ca. 393 K.

In this experiment, an initial rate of CH₄ oxidation is always obtained since only reactants such as CH₄ and O₂ are circulating and their pressures do not decrease so much since the CH₄ and O₂ conversions are below 2–5% and 10-15%, respectively. The CH₄ pressure in this experiment is limited below the saturation pressure at 77 K, i.e., 9.7 Torr.

The ¹⁸O% in the products were recorded on a Shimadzu QP-2000A mass spectrometer. The percent of ¹⁸O in HCHO and in CO₂ was well determined while that in CH₃OH was not determined owing to disturbation by a small amount of air (32: O₂) in the mass spectrometer. The sample gases were introduced directly to the ion chamber without using a separating column in order to prevent the exchange with ¹⁶O water in the column.

3. Results and discussion

3.1. SiO₂ catalysts prepared from Si

The oxidation of Si to SiO₂ by air was very low when it was not ground in a mortar while it was oxidized rapidly when it was ground prior to heating. An unoxidized Si and a slightly oxidized Si(5.6%) sample showed the same diffraction patterns of metal Si (cubic system, JPDSC 27-1402) according to X-ray measurements. The FT-IR spectra of metal Si showed no IR absorption. With the 5.6% catalyst, several bands at around 1000— 1250 cm⁻¹ were observed, which are the same as the results reported for the thin SiO₂ film [16]. These have been attributed to the longitudinal and transversal optical splittings of Si-O vibrations. With the 11-19% catalysts, the intensity of the Si-O band at around 1125 cm⁻¹ gets stronger. This suggests that SiO₂ crystal layers become thick for these catalysts. In the case of metal Si, however, it has been reported [17-19] that its surface is generally covered with several layers of protective oxide and that the states of Si1+-3+ as well as Si4+ seem to be present.

3.2. Oxidation of CH₄ over SiO₂ prepared from metal Si

The partial oxidation of CH_4 was carried out over SiO_2 prepared from Si as described above. The results are shown in table 1. In this work, the CO formation was negligibly small. There is no selectivity to CH_3OH and HCHO over the metal Si catalyst though CO_2 formation

Table 1 The activities of partial oxidation of CH_4 over SiO_2 prepared from metal Si. $p(CH_4) = 8.3$ Torr (1 Torr = 133.3 Pa), concentration of $O_2 = 3\%$, temperature = 873 K, catalyst: 0.5 g ^a

Catalyst SiO ₂ (mol%)		CH_4 conversion $(\% g^{-1} h^{-1})$	Product selectivity (%)		
		,	CH ₃ OH	нсно	CO_2
Si		0.2	0	0	100
Si5.6		0.63	13	40	46
Si11		0.88	3	63	33
Si19		0.94	18	64	18
Si*9.6	1	0.08	36	0	64
	2	0.10	8	23	69
Si*19	1	0.19	70	0	30
	2	0.29	37	17	46
	3	0.35	21	39	40

^a The Si5.6-19 catalysts were prepared after grinding of Si. The Si*9.6-*19 catalysts were prepared without grinding of Si. The numbers of 1, 2, and 3 for Si* catalysts denote the first, second, and third experiments for 1 h each. Oxygen conversions were below 10-15% in 1 h for these reactions.

occurs on it. With the Si5.6 catalyst, the selectivity to HCHO increases remarkably and the activity also increases. With the Si11 and Si19 catalysts, the selectivities to HCHO formation and the activities slightly increase. The selectivities to CH₃OH over these catalysts range around 15%. These results confirm that the selectivities to partial oxidation products such as HCHO and CH₃OH increase by the presence of thick SiO₂ crystal layers on the surface of Si. As described before, the metal Si has nanolayers of SiO₂ [17–19] on the surface. But, these thin layers do not have partial oxidation activity here.

The activities and selectivities for partial oxidation of CH₄ vary remarkably with the catalyst conditions. For example, the catalysts which were heated and prepared after grinding the metal Si in a mortar had good activities as described above. The catalysts prepared from Si without grinding had low activities for the CH₄ oxidation as shown also in table 1. The Si*9.6 and *19 catalysts show low activity but high selectivity to CH₃OH in the first experiment. When the CH₄ oxidations are repeated for each 1 h, the activities and selectivities gradually change as shown in table 1. The selectivity to CH₃OH decreases and that to HCHO increases. This suggests that the SiO₂ surface changes after the reactions. Fig. 2 shows these selectivities as a function of CH₄ conversion over many SiO₂ catalysts which are prepared from Si as described above. The CH₃OH selectivity is higher at low conversion range below 0.2%. The selectivity to HCHO becomes higher at the conversion range above 1%. The selectivity to CO₂ ranges from 60 to 40%. This suggests that CH₃OH is formed initially at very low conversions below ca. 0.2% and CH₃OH seems to be rapidly dehydrogenated to HCHO. The total oxidation to CO₂ seems to occur independently for partial oxidation. Previous workers [12–

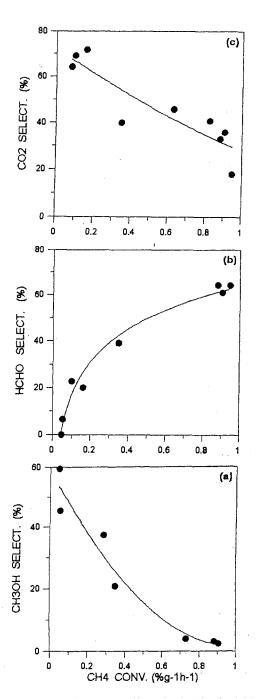


Fig. 2. The CH₃OH (a), HCHO (b), and CO₂ (c) selectivities in the CH₄ oxidation as a function of conversion over SiO₂ prepared from metal Si. $p(\text{CH}_4) = 8.3$ Torr, concentration of O₂ = ca. 3%, temperature = 873 K, catalysts: Si5.6–Si29 and Si*5–*19 samples, 0.3–0.5 g were used.

14] have reported the formation of only HCHO in partial oxidation over SiO₂. In this work at low pressure, the CH₃OH formation was confirmed. Only CO₂ formation takes place in spite of low CH₄ conversion over the metal Si catalyst. As described above, its surface is covered with very thin layers of suboxides as well as SiO₂. Such a feature seems to be due to the different activities for hydrogen abstraction and CO₂ formation on suboxides. Details are unclear.

3.3. Dependence on oxygen pressure of CH₄ oxidation

The rate of oxidation of CH_4 was examined at some oxygen pressures (fig. 3). The ADM silica was used as a catalyst since it was prepared by heating of metal Si. The rate of conversion increases with an increase of oxygen pressures. The selectivity to CH_3OH is high below 1% of O_2 concentration, while that to HCHO becomes high above 2–3% of O_2 . In the absence of gaseous oxygen, the oxidation reaction does not proceed, in agreement with the results by Parmaliana et al. [13]. These results suggest that gaseous oxygen is needed for the partial oxidation of CH_4 .

3.4. Comparison of oxidation activities between Si5.6 and various commercial silicas

The activities and selectivities of the partial oxidation of CH₄ over various silicas are compared to each other. The results are shown in table 2. The rates of conversion range from 0.6 to 1.2% $\rm g^{-1}$ h⁻¹. The selectivities to HCHO range from 40 to 15%. Such differences, however, are not big among these silicas. The surface area of the Si5.6 sample is ca. 0.5 m² g⁻¹ while those of A300 and SIO-4 are 300–350 m² g⁻¹. It is concluded that the size of surface area has essentially little effect on the oxidation rates.

Table 2 includes the impurities in the silicas. The SIO-4 contains very low impurities below several ppm. The OX50 contains 100–800 ppm of Al₂O₃, Fe₂O₃ and TiO₂. Both rates for CH₄ oxidation, however, are nearly the same. The ADM silica contains 400 ppm of Al₂O₃ and 275 ppm of CaO. But there is little rate difference between the Si5.6 and ADM silica catalyst. These suggest that the rates are independent of the impurities as far as their concentrations are concerned as described

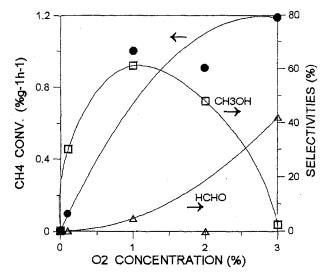


Fig. 3. The CH₄ conversion and product selectivities as a function of O_2 concentration. $p(CH_4) = 8.3$ Torr, temperature = 873 K, catalyst: ADM silica 0.3 g.

Table 2 Comparison of oxidation activities and properties between Si5.6 and various commercial silicas. $p(CH_4) = 8.3$ Torr, concentration of $O_2 = 3\%$, temperature = 873 K, catalyst: 0.3–0.5 g

	Si5.6 (this work)	ADM (Shin-Etsu Chem.)	A300 (Japan Aerosil)	OX50 (Japan Aerosil)	SIO-4 (JRC) ^a	Silicagel 60/E.P. (Merck)
$CH_4 \text{ conv.} (\% \text{ g}^{-1} \text{ h}^{-1})$	0.63	1,2	0.57	1.0	1.1	0.56
HCHO(%)	40	42	13	17	43	60
CH ₃ OH(%)	13	4	3	6	8	16
surface area $(m^2 g^{-1})$	0.5	12	300	50	350	400
impurities (ppm)						
Al_2O_3	< 10	400	< 100	< 800	6.6	_
Fe_2O_3	< 25	55	< 10	< 100	0.5	< 2
TiO_2	< 5	_	< 100	< 300	1.9	_
CaO	< 1	275	-		0.3	

^a See text. The previous results [15] over A300 and ADM silica are somewhat different from those listed here. This is caused by the circulation speed in the circulation system. Oxygen conversions were below 10–20% for these reactions in 1 h.

above. The selectivities to HCHO on A300 and OX50 are a little smaller than those on the SIO-4, ADM, and Si5.6 silicas. This seems to be caused by the presence of TiO₂ in the former silica, i.e., further oxidation to CO₂ and CO.

3.5. The ¹⁸O tracer studies over some silica catalysts

The partial oxidation of CH₄ using ¹⁸O₂(98%) was carried out over the Si5.6 and SIO-4 catalysts. With the Si5.6 catalyst, the ¹⁸O% in HCHO, H₂O, and CO₂ which were obtained under similar conditions in table 1 $(0.3\% \text{ g}^{-1} \text{ of CH}_4 \text{ conversion for } 0.5 \text{ h}) \text{ were } 3, 0.5, \text{ and }$ 50%, respectively. With the SIO-4 catalyst, those of HCHO, H₂O, and CO₂ were 2, 1, and 20%, respectively, under the same conditions in table 2 (2.1% g⁻¹ of conversion for 2 h). Only 2-3% of ¹⁸O in the HCHO and H₂O are remarkably low in spite of the use of 98% of ¹⁸O₂. These unexpectedly low values seem to be originated from the fast exchange of these products with surface -OH groups at around 873 K after formation. The ¹⁸O% values of CO₂ range around 20-50%, which are higher values than those of HCHO and H2O. However, these values were lower than the 98% of reactant ¹⁸O₂. Similar results were reported by Koranne et al., over V oxide/SiO₂ [20]. Thus, it is difficult to know the source of oxygen in these products by the ¹⁸O₂ tracer studies. However, it is clear that HCHO or CH₃OH interacts rapidly with the surface of SiO2. The oxygen in CO2 may come from anions of SiO₂.

3.6. The oxidation of C_2H_6 over silica

In order to know the dehydrogenation activity of silica, the oxidation of C_2H_6 over various silicas was carried out in the presence and absence of oxygen. The results are shown in table 3. The selectivity to C_2H_4 at 873 K is ca. 90%. Thus, the rate of C_2H_4 formation indi-

cates the dehydrogenation activity of SiO_2 . The rates over ADM, OX50, and A300 run roughly parallel with the values of surface area in the absence of oxygen. In the presence of gaseous oxygen, the rates increase slightly for A300 and OX50 and ca. 6 times for ADM. There appears no big difference between oxidation reactions in the presence and absence of gaseous oxygen. These data suggest that the C_2H_4 formation takes place via hydrogen abstraction from C_2H_6 by lattice oxygen of SiO_2 . In the case of CH_4 , the activity of hydrogen abstraction was about 10 times smaller than that of C_2H_6 on SiO_2 at 873 K. Kastanas et al. reported similar results with CH_4 and C_2H_6 [21].

3.7. Summary and tentative mechanism

Our results can be summarized as follows: (1) The results over SiO_2 from metal Si are nearly the same as those over commercial SiO_2 in the partial oxidations of CH₄. The rate of CH₄ partial oxidation does not depend on the SiO_2 area in the range 0.5–400 m² g⁻¹. (2) The CH₃OH formation was confirmed at very low conversion. (3) Gaseous oxygen is needed for the CH₃OH and HCHO formation over SiO_2 and the rates depend on oxygen pressures. (4) The hydrogen abstraction from

Table 3 Dehydrogenation of C_2H_6 over some silica in the presence and the absence of gaseous oxygen. Reaction time: 5 min, temperature = 873 K, $p(C_2H_6) = 20$ Torr, catalyst: 0.3 g

Silica ^a	Rate of C_2H_4 formation (μ mol g ⁻¹)		
	without O ₂	with 5% of O ₂	
ADM	0.36	2.2	
A300	1.0	1.3	
OX50	0.55	0.75	

^a See table 2. This experiment was carried out using a closed circulation system without cooling at 77 K (fig. 1).

C₂H₆ takes place on SiO₂ even in the absence of gaseous oxygen.

Sun et al. [14] have proposed that the HCHO formation did not originate from methyl and methoxy radicals but from methoxy surface complexes under the consideration of activation energy features. Parmaliana et al. [13] have proposed the reaction of surface species of CH₄ and oxygen.

In this work, however, both heterogeneous and homogeneous steps seem to be necessary in the case of CH₃OH formation. The SiO₂ seems to play an important role on the hydrogen abstraction and CH₃ radical formation in the scheme

$$CH_{4}\mathop{\longrightarrow}_{(O)_{s}}CH_{3}+\left(-OH\right)_{s}$$

where (O)_s is surface oxygen. A peroxy radical will be formed homogeneously, then methoxy radical will be formed:

$$CH_3 + O_2 \rightarrow CH_3OO \rightarrow CH_3O$$

The CH₃OH and HCHO may be formed homogeneously or heterogeneously on the surface from methoxy radicals. If the steps of peroxy and methoxy radical formations are slow, the rate of CH₃OH or HCHO formation will become slow and the effect of surface area size may disappear. If the reaction proceeds via surface methoxy species or adsorbed species [13,14], the rate should depend on the area of SiO₂ and, furthermore, CH₃OH and HCHO will be produced by the lattice oxygen in the absence of gaseous oxygen. But our results are not in agreement with them. The main role of SiO₂ seem to be in the hydrogen abstraction from CH₄ and from CH₃OH to HCHO without further oxidation in the case of partial oxidation.

References

[1] R. Pitchai and K. Kher, Catal. Rev. Sci. Eng. 28 (1986) 13.

- [2] J.C. Mackie, Catal. Rev. Sci. Eng. 33 (1991) 169.
- [3] R.D. Srivastava, P. Zhou, G.J. Stiegel, V.U.S. Rao and G. Cinquegrane, Catalysis 19 (1991–2) 183.
- [4] R. Burch, G.D. Squire and S.C. Tsang, J. Chem. Soc. Faraday Trans. I 85 (1989) 3561.
- [5] N.R. Hunter, H.D. Gesser, L.A. Morton and P.S. Yarlagada, Appl. Catal. 57 (1990) 45.
- [6] R.-S. Liu, M. Iwamoto and J.H. Lunsford, J. Chem. Soc. Chem. Commun. (1982) 78;
 H.-F. Liu, R.-S. Liu, K.Y. Liew, R.E. Johnson and J.H. Lunsford, J. Am. Chem. Soc. 106 (1984) 4117.
- [7] M.M. Khan and G.A. Somorjai, J. Catal. 91 (1985) 263.
- [8] O.V. Krylov, A.A. Firsova, A.A. Bobyshev, V.A. Radtsig, D.P. Shashkin and L.Ya. Margolis, Catal. Today 13 (1992) 381.
- [9] T. Kobayashi, K. Nakagawa, K. Tabata and M. Haruta, J. Chem. Soc. Chem. Commun. (1994) 1609.
- [10] N.D. Spencer, J. Catal. 109 (1988) 187;
 N.D. Spencer and C.J. Pereira, J. Catal. 116 (1989) 399.
- [11] M.M. Koranne, J.G. Goodwin and G. Marcelin, J. Catal. 148 (1994) 388.
- [12] G.N. Kastanas, G.A. Tsigdinos and J. Schwank, Appl. Catal. 44 (1988) 33.
- [13] A. Parmaliana, F. Frusteri, D. Miceli, A. Mezzapica,
 M.S. Scurrell and N. Giordano, Appl. Catal. 78 (1991) 17;
 A. Parmaliana, F. Frusteri, A. Mezzapica, M.S. Scurrel and
 N. Giordano, J. Chem. Soc. Chem. Commun. (1993) 751;
 A. Parmaliana, V. Sokolovskii, D. Miceli, F. Arena and
 N. Giordano, J. Catal. 148 (1994) 514.
- [14] Q. Sun, R.G. Herman and K. Klier, Catal. Lett. 16 (1992) 251.
- [15] T. Ono, K. Ikuta and Y. Shigemura, in: Proc. 10th Int. Congr. on Catalysis, Budapest 1992, Vol. C, eds. L. Guczi, F. Solymosi and P. Tétényi (Elsevier, Amsterdam, 1993) p. 1967.
- [16] I.P. Liovski, V.G. Litovchenko, V.G. Lozinski and G. I. Steblovski, Thin Solid Films 213 (1992) 164.
- [17] S. Iwata and A. Ishizaka, Mater. Trans. JIM 33 (1992) 675.
- [18] K. Tkacova, N. Stevulova, Z. Bastl, P. Stopka and M. Balintova, J. Mater. Res. 10 (1995) 2728.
- [19] M. Niwano, H. Katakura, Y. Takeda, Y. Takakuwa, N. Miyamoto, A. Hiraiwa and K. Yagi, J. Vac. Sci. Technol. A 9 (1991) 195.
- [20] M.M. Koranne, J.G. Goodwin Jr. and G. Marcelin, in: Proc. 10th Int. Congr. on Catalysis, Budapest 1992, Vol. A, eds. L. Guczi, F. Solymosi and P. Tétényi (Elsevier, Amsterdam, 1993) p. 219.
- [21] G.N. Kastanas, G.A. Tsigdinos and J. Schwank, J. Chem. Soc. Chem. Commun. (1988) 1298.